第5回東北地区音響学研究会(2022年11月30日)資料番号5-6 3パルス法を用いた超音波イメージングにおける キャビテーション気泡領域判別手法に関する基礎検討

○久慈祥太(東北大),梅村晋一郎,吉澤晋(東北大 / ソニア・セラピューティクス)

## 1 研究背景

High-intensity focused ultrasound (HIFU) 治 療は体外から超音波を照射し,治療対象部位 に集束させて加熱凝固させる,切開が不要の 低侵襲な治療法である。しかし一回の照射で 治療できる領域が小さく,治療に時間がかか っていた。そのため,キャビテーション気泡 を用いて HIFU 治療の効率化を目指している。 その際,治療の安全性・有効性を高めるため 気泡モニタリングが重要になり,先行研究で は位相を 120 度ずらした 3 つのパルスを送信 する 3 パルス法が検討されていた。しかし従 来の方法では気泡成分と高輝度な組織成分を 輝度で区別することが難しかった。そのため, 本検討では気泡成分のみを抽出するフィルタ ーリング手法の提案と検討を行なった。

# 2 原理・実験方法

# 2.1 3 パルス法

3パルス法<sup>[1,2]</sup>は位相を 120 度ずつずらした 3 つのパルスをそれぞれ送受信してイメージ ングを行い、3 つの受信波を加算することで、 気泡からの信号を抽出する手法である。これ は気泡からの散乱波の位相が必ずしも保持さ れないことを含めた非線形散乱特性を利用し ている。3つの受信波加算では、基本波成分 と2倍高調波成分は位相の関係で打ち消せる。 これは線形散乱体である組織からの信号が打 ち消させることを意味する。しかし気泡の散 乱によってのみ生じる 1.5 倍高調波成分や、 位相が保持されていない成分は打ち消されず 残る。したがって3パルス法では気泡由来の 成分を抽出することで気泡イメージングを行 うことができる。

### 2.2 気泡領域抽出フィルター

従来の3パルス法では高輝度な線形散乱体 からの信号は加算後も十分に打ち消されず, 気泡との区別が難しかった。そのため、フィ ルターを用いた気泡領域抽出手法について検 討した。まず、3パルス法で得た加算後の画像 と加算前の任意の1フレームを比較し、加算 に起因する輝度の減少量をピクセルごとに算 出する。ここで3パルス法の原理から減少量 が大きければ組織領域、小さければ気泡領域 だと考えることができる。そのため、気泡領 域と判別する減少量の閾値を決め、それより 減少量が小さければ1、大きければ0とする フィルターを作成した。

#### 2.3 実験系

Figure 1 に実験系を示す。脱気水で満たし た水槽内に鶏胸肉をセットし、実験を行った。 鶏胸肉は 0.9%の生理食塩水で脱気処理を行 ったものを使用し、高輝度散乱体として注射 針を鶏胸肉に刺した。また 128-ch のアレイト ランスデューサで HIFU を照射、その中央に セットされたセクタープローブで超音波イメ ージングを行った。



Fig.1:実験系の概略図

# 2.4 超音波照射シーケンス

Figure 2 に超音波照射シーケンスを示す。 HIFU はキャビテーションを生成のため、0.1 ms、101 kW/cm<sup>2</sup>の Trigger pulse をトランスデ ューサから照射した。また本検討では気泡を 持続的に振動させ、組織を加熱するための Heating burst は照射しなかった。イメージン グは Fig. 2 のようにそれぞれ位相を変えたパ ルスを順に送受信して RF データを取得した。

<sup>\*</sup>Basic study on cavitation bubble region detection method in ultrasound imaging by triplet pulse sequence, by S. Kuji, S. Umemura, S. Yoshizawa (Tohoku Univ, SONIRA Therapeutics).

#### 第5回 東北地区音響学研究会(2022年11月30日)資料番号 5-6



### 2.5 処理フロー

イメージング RF データ取得からフィルター適応までの処理フローは次の通りである。
①0°,120°,240°の RF データを取得
②加算平均することで 3P を作成
③ハイパスフィルターを 3P と 1P(0°)に適用
④3P と 1P を IQ データに変換
⑤3P/1P の 2 値化によりフィルターを作成
⑥3P にフィルターを適用
ここでハイパスフィルター(2.5MHz)は、足し
合わせによって消えず、画像全体に含まれる
イメージングパルスの包絡線成分を除去する
ために適応した。

## 3 結果・考察

Figure 3 に IQ データに変換後の 1P(0°)と 3PのB像を示す。HIFU 焦点は depth: 70 mm, width: -3 mm,高輝度散乱体である注射針は depth: 67 mm, width: 16 mm 付近にセットした。 1P 画像では,注射針は確認できるが気泡領域 は確認することが難しかった。しかし 3P 画 像では組織領域の信号が打ち消されることで 輝度が小さくなり,気泡と思われる領域を確 認できた。しかし注射針と気泡領域の輝度が 同程度になっており,区別がつかなかった。



次に気泡領域抽出フィルタ手法を行った結 果を Fig. 4 に示す。Figure 4(a)は 1P から 3P で

の輝度の減少量を表している。これは ROI を 2×2 mm<sup>2</sup> に設定し, ROI 内の平均値をその ROI の中心ピクセルの値とするスムージング 処理をそれぞれの IQ データ全体に適用し、 その後 3P/1P の値から算出した。ここでは気 泡領域と思われる領域で減少量が小さく,注 射針,組織領域では大きかった。次に気泡領 域判別の閾値を-20 dB とし、フィルタを作成 した。Figure 4(b),(c)はそれぞれフィルタなし (従来)とフィルタありの気泡可視化3P画像結 果である。(b)では注射針や組織の高輝度領域 が気泡として抽出されていたが、 作成したフ ィルタを適応することで気泡領域の選択性が 向上した。これは 3P 画像で高輝度かつ 3P/1P で減少量が小さい領域を選択しているため、 気泡の選択性が向上したと考えられる。



Fig.4:気泡領域抽出フィルタ手法結果 (a)輝度減少量マップ(3P/1P),(b)フィルタなし 3P 画像,(c)フィルタあり 3P 画像

#### 4 結論

気泡領域を選択的に抽出するフィルタ手法 の有効性を実験的に検討した。本検討で提案 したフィルタにより,従来の3パルス法のみ の時よりも気泡抽出性能が改善された。

## 参考文献

- R. Iwasaki, R. Nagaoka, S. Yoshizawa: Jpn. J. Appl. Phys. 57, 07LF12, 2018.
- [2] I. Shiozaki, S. Umemura, S. Yoshizawa: Jpn. J. Appl. Phys. 59, SKKE05, 2020.